If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-18t+5=0
a = 1; b = -18; c = +5;
Δ = b2-4ac
Δ = -182-4·1·5
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{19}}{2*1}=\frac{18-4\sqrt{19}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{19}}{2*1}=\frac{18+4\sqrt{19}}{2} $
| 0.7=7/x | | 144=x+2x | | 3(6x-5)+4=4x+3 | | x+12-5x=-28-2x | | 473=5x+2x+60 | | 3k+k+k+2k+3k=12 | | 2x=15=-3 | | 92=x+(x+2)+(x+4)+(x+6) | | 13c-9c=8 | | z=15+3/4 | | 16x^2-95x+75=0 | | 9u-8u=7 | | z=1/5+3/4 | | 14,91+(−x)=−345. | | 16=(x-4)+(x-4)+x | | (x+80÷2)=44 | | 3x+8-2x=-3x-24 | | x+80/2=44 | | (x+80/2)=44 | | x/3-4=2x | | 5t-3t+1=-2t-5 | | (x+90/5)=34 | | 9j-4j=5 | | 500=x+50 | | (x+90/5)+34=180 | | 4m+2=7-5m | | (x+90/5)+34=360 | | 4x+6-x=-2x+21 | | 11x+17x=-6 | | y=4(4)-1 | | 240+20x=300 | | 3x+27=5x-12 |